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5(a). The Three-Dimensional Delta Function

The Divergence of f/r?

Consider the vector function T
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At every location, A is directed radially outward. When we / \
calculate the divergence we get precisely zero:
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The plot thickens if you apply the divergence theorem to this function. Suppose we
integrate over a sphere of radius R, centered at the origin; the surface integral is
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But the volume integral, j(%-z\)dr , IS zero. Does this mean that the divergence theorem
is false?

The source of the problem is the paint r = 0, where A blows up. It is quite true that

V-A=0 everywhere except the origin, but right at the origin the situation is more
complicated.
Notice that the surface integral is independent of R; if the divergence theorem is right

(and it is), we should get j (5 . Z\)dr =47 for any sphere centered at the origin, no matter
how small. Evidently the entire contribution must be coming from the point r = 0!

Thus, V- A has the bizarre property that it vanishes everywhere except at one point, and
yet its integral (over any volume containing that point) is 4z . No ordinary function
behaves like that. (On the other hand, a physical example does come to mind: the density
(mass per unit volume) of a point particle. It's zero except at the exact location of the
particle, and yet its integral is finite namely, the mass of the particle.) What we have
stumbled on is a mathematical object known to physicists as the Dirac delta function.
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It is an easy matter to generalize the delta function to three dimensions:
5°()=5(x)5(y)(2)
(As always, r=x%+ yy+zZ is the position vector, extending from the origin to the

point (x, y, z)). This three-dimensional delta function is zero everywhere except at (O,

0, 0), where it blows up. Its volume integral is 1

and

[ -ape <0

all space

Since the divergence of /r? is zero everywhere except at the origin, and yet its integral
over any volume containing the origin is a constant (4xz ). These are precisely the
defining conditions for the Dirac delta function; evidently
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Example: Evaluate the integral J :I(r +1)V( >
3 r

Jdr where v is a sphere of radius R

centered at the origin.

Solution:
) :j@uﬁ{%}m “f(r+1)475° (r)dr = 47 (0+1) = 4
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